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1.  𝑦𝑦 = �(2𝑥𝑥 + 𝑥𝑥) 

a. Complete the table below, giving the values of y to 3 decimal places.

         (1) 

b. Use the trapezium rule with all the values of y from your table to find an approximation

for the value of

∫ �(2𝑥𝑥 + 𝑥𝑥)1
0    d𝑥𝑥 

         giving your answer to 3 significant figures. 

The trapezium rule states that: 

� 𝑦𝑦
𝑏𝑏

𝑎𝑎
𝑑𝑑𝑥𝑥 ≈

1
2
ℎ{(𝑦𝑦0 + 𝑦𝑦𝑛𝑛) + 2(𝑦𝑦1 + 𝑦𝑦2 + ⋯+ 𝑦𝑦𝑛𝑛−1)}, where ℎ =

𝑏𝑏 − 𝑎𝑎
𝑛𝑛

ℎ =
1 − 0

5
= 0.2 

� √2𝑥𝑥 + 𝑥𝑥
1

0
 𝑑𝑑𝑥𝑥 ≈

1
2

(0.2)�(1 + 1.732) + 2(1.161 + 1.311 + 1.455 + 1.594)� = 1.377 

B1 Uses a strip width of 0.2 units.  This may be embedded in the trapezium formula. 

e.g. 0.2
2

{… … … } 

M1 Uses the correct form of the bracket within the trapezium rule. 

A1 awrt 1.38 

(3) 

𝑥𝑥 0 0.2 0.4 0.6 0.8 1 
𝑦𝑦 1 1.161 1.311 1.455 1.594 1.732 
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 Using your answer to part (b) and making your method clear, estimate 

c. ∫ �(22𝑥𝑥 + 2𝑥𝑥)0.5
0    d𝑥𝑥 

𝑢𝑢 = 2𝑥𝑥  ⇒  d𝑢𝑢
d𝑥𝑥

= 2    ⇒  d𝑥𝑥 = d𝑢𝑢
2

         

∫ �(22𝑥𝑥 + 2𝑥𝑥)0.5
0    d𝑥𝑥 = ∫ �(2𝑢𝑢 + 𝑢𝑢)1

0    d𝑢𝑢
2

𝑢𝑢 = 2𝑥𝑥    ⇒ 𝑥𝑥 = 0.5 ,𝑢𝑢 = 1   𝑥𝑥 = 0,𝑢𝑢 = 0            
1
2 ∫ �(2𝑢𝑢 + 𝑢𝑢)1

0    d𝑢𝑢 = 1
2

× 1.38 = 0.689 

(2) 

M1 Attempts to answer to (b) × 1
2
 

A1 0.69 

   (Total for Question 1 is 6 marks) 
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2.  

5

Figure 1 

      Figure 1 shows a triangle OAC where OB divides AC in the ratio 2: 3.       

Show that b = 1 (3a + 2c) 

𝐴𝐴𝐴𝐴�����⃗ = b − 𝐚𝐚,𝐴𝐴𝐴𝐴�����⃗ = c − 𝐚𝐚 and 𝐴𝐴𝐴𝐴�����⃗ = c − 𝐛𝐛  

𝐴𝐴𝐴𝐴�����⃗ = 2
5
𝐴𝐴𝐴𝐴�����⃗   

b − 𝐚𝐚 = 𝟐𝟐
𝟓𝟓

(c − 𝐚𝐚) ⇒  𝟓𝟓b − 5𝐚𝐚 = 𝟐𝟐(c − 𝐚𝐚) ⇒  𝟓𝟓b − 5𝐚𝐚 = 𝟐𝟐𝟐𝟐 − 𝟐𝟐𝐚𝐚 ⇒  

b = 𝟏𝟏
𝟓𝟓

(3a + 2𝟐𝟐) 

       M1 Attempts any two of 𝐴𝐴𝐴𝐴�����⃗ = b − 𝐚𝐚,𝐴𝐴𝐴𝐴�����⃗ = c − 𝐚𝐚 and 𝐴𝐴𝐴𝐴�����⃗ = c − 𝐛𝐛 

       dM1 Uses the given information. 

             e.g. 𝐴𝐴𝐴𝐴�����⃗ = 2
5
𝐴𝐴𝐴𝐴�����⃗   or  𝐴𝐴𝐴𝐴�����⃗ = 3

5
𝐴𝐴𝐴𝐴�����⃗  

       A1 Fully correct work including bracketing leading to the given answer. 

(3) 

   (Total for Question 2 is 3 marks) 
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3. Use the laws of logarithms to solve the equation

2 + log2(2𝑥𝑥 + 1) = 2log2(22 − 𝑥𝑥) 

2 + log2(2𝑥𝑥 + 1) = log2(22 − 𝑥𝑥)2 
2 =  log2(22 − 𝑥𝑥)2 − log2(2𝑥𝑥 + 1) 

2 = log2
(22 − 𝑥𝑥)2

(2𝑥𝑥 + 1)

4 =
(22 − 𝑥𝑥)2

(2𝑥𝑥 + 1)
0 = 𝑥𝑥2 − 52𝑥𝑥 + 480 
0 = (𝑥𝑥 − 40)(𝑥𝑥 − 12) 

𝑥𝑥 = 40, 𝑥𝑥 = 12 

We reject 𝑥𝑥 = 40 as 22 − 40 < 0, so is undefined 

     M1 Uses or states  2log2(22 − 𝑥𝑥) = log2(22 − 𝑥𝑥)2 

     M1 Uses addition (or subtraction) law correctly  

     M1 Connects 2 with 4 OR 22 correctly and proceeds to form a quadratic in x 

     A1 Correct equation, not involving logs, in any form. 

     M1 Solves a 3TQ by factorisation or by completing of the square or by correct use of  

           formula,  

      A1 𝑥𝑥 = 12 only and  reject 𝑥𝑥 = 40  

(6) 

   (Total for Question 3 is 6 marks) 
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4. In the binomial expansion of (2 − 𝑘𝑘𝑥𝑥)10 where k is a non-zero positive constant.

The coefficient of 𝑥𝑥4 is 256 times the coefficient of 𝑥𝑥6.

Find the value of k.

𝑥𝑥4 coefficient: 𝐴𝐴426(−𝑘𝑘)4 10

𝑥𝑥6 coefficient: 𝐴𝐴624(−𝑘𝑘)6      10

We have 

𝐴𝐴426(−𝑘𝑘)4 10 = 256 𝐴𝐴624(−𝑘𝑘)6      10  

210 × 64𝑘𝑘4 = 256 × 16𝑘𝑘6 ⇒  4096𝑘𝑘6 − 64𝑘𝑘4 = 0 ⇒  64𝑘𝑘4(64𝑘𝑘2 − 1) = 0 

𝑘𝑘 = 0,𝑘𝑘 =
1
8

We reject 𝑘𝑘 = 0 as the question states that 𝑘𝑘 is non-zero 

    M1 For an attempt at the correct coefficient of x4 and x6 

    dM1 For 𝐴𝐴426(−𝑘𝑘)4 =   10  256 × 𝐴𝐴624(−𝑘𝑘)6      10 and attempt to find k 

    A1 𝑘𝑘 = 1
8
  and no other values. 

(3) 

   (Total for Question 4 is 3 marks) 
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5. a. Given that

𝑥𝑥2 − 1
𝑥𝑥 + 3

≡ 𝑥𝑥 + 𝑃𝑃 +
𝑄𝑄

𝑥𝑥 + 3

       find the value of the constant P and show that 𝑄𝑄 = 8 

Multiplying both sides by (𝑥𝑥 + 3): 

(𝑥𝑥2 − 1) = 𝑥𝑥(𝑥𝑥 + 3) + 𝑃𝑃(𝑥𝑥 + 3) + 𝑄𝑄 
(𝑥𝑥2 − 1) = 𝑥𝑥2 + 3𝑥𝑥 + 𝑃𝑃𝑥𝑥 + 3𝑃𝑃 + 𝑄𝑄 
(𝑥𝑥2 − 1) = 𝑥𝑥2 + (3 + 𝑃𝑃)𝑥𝑥 + 3𝑃𝑃 + 𝑄𝑄 

3 + 𝑃𝑃 = 0 ⇒ 𝑃𝑃 = −3,      3𝑃𝑃 + 𝑄𝑄 = −1 ⇒ 𝑄𝑄 = 8 

M1  Multiplies by (𝑥𝑥 + 3) and attempts to find values for P and Q  

Or attempts to divide 𝑥𝑥2 − 1 by 𝑥𝑥 + 3 and obtains a linear quotient and a constant 

remainder.      

            A1 𝑃𝑃 = −3 ,𝑄𝑄 = 8 

(2) 

Figure 3 

R 
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The curve C has equation 𝑦𝑦 = g(𝑥𝑥), where 

g(𝑥𝑥) = 𝑥𝑥2−1
𝑥𝑥+3

         𝑥𝑥 > −3 

        Figure 3 shows a sketch of the curve C. 

        The region R, shown shaded in Figure 4, is bounded by C, the x-axis and the line with  

         equation x = 5. 

b. Find the exact area of R, writing your answer in the form 𝑎𝑎 ln 2, where a is constant to

be found.

𝑅𝑅 = ∫ 𝑥𝑥2−1
𝑥𝑥+3

5
1  𝑑𝑑𝑥𝑥  

𝑅𝑅 = �𝑥𝑥
2

2
− 3𝑥𝑥 + 8 ln(𝑥𝑥 + 3)�

1

5
= (25

2
− 15 + 8 ln 8) − (1

2
− 3 + 8 ln 4) = 8 ln 8

4

= 8 ln 2  

(4) 

b. M1 Integrates an expression of the form 𝑥𝑥 + 𝑃𝑃 + 𝑄𝑄
𝑥𝑥+3

to obtain 𝑥𝑥
2

2
+ 𝑃𝑃𝑥𝑥 + 𝑘𝑘 ln(𝑥𝑥 + 3)

          A1 Correct integration  

M1 Substitutes both limits 1 and 5 into an expression 𝑥𝑥
2

2
+ 𝑃𝑃𝑥𝑥 + 𝑘𝑘 ln(𝑥𝑥 + 3) and

subtracts either way round with fully correct log work to combine two log terms 

leading to an answer of the form 𝑎𝑎 ln 𝑏𝑏  

           A1 8 ln 2 

   (Total for Question 5 is 6 marks) 
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6.  

Figure 4 

      Figure 4 shows a sketch of the curve C with equation 𝑦𝑦 = f(𝑥𝑥), where 

f(𝑥𝑥) = 2𝑥𝑥2−𝑥𝑥
√𝑥𝑥

− 2ln �𝑥𝑥
2
� ,       𝑥𝑥 > 0

The curve has a minimum turning point at Q, as shown in Figure 4.

a. Show that f ′(𝑥𝑥) = 6𝑥𝑥2−𝑥𝑥−4√𝑥𝑥
2𝑥𝑥√𝑥𝑥

𝑓𝑓′(𝑥𝑥) =
𝑑𝑑
𝑑𝑑𝑥𝑥

�
2𝑥𝑥2 − 𝑥𝑥
√𝑥𝑥

� −
𝑑𝑑
𝑑𝑑𝑥𝑥

�2 ln �
𝑥𝑥
2
�� 

Using the quotient rule on the first term gives: 

𝑑𝑑
𝑑𝑑𝑥𝑥

�
2𝑥𝑥2 − 𝑥𝑥
√𝑥𝑥

� =
6𝑥𝑥 − 1

2√𝑥𝑥

The second term gives: 

𝑑𝑑
𝑑𝑑𝑥𝑥

�2 ln �
𝑥𝑥
2
�� =

2
𝑥𝑥
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𝑓𝑓′(𝑥𝑥) =
6𝑥𝑥 − 1

2√𝑥𝑥
−

2
𝑥𝑥

=
6𝑥𝑥2 − 𝑥𝑥 − 4√𝑥𝑥

2𝑥𝑥√𝑥𝑥

(4) 

B1 Differentiates ln 𝑥𝑥
2

 →1
𝑥𝑥

M1 Correct method to differentiate 2𝑥𝑥
2−𝑥𝑥
√𝑥𝑥

A1 Correct differentiation of 2𝑥𝑥
2−𝑥𝑥
√𝑥𝑥

   A1 Obtains dy
d𝑥𝑥

= 6𝑥𝑥2−𝑥𝑥−4√𝑥𝑥
2𝑥𝑥√𝑥𝑥

 

b. Show that the x-coordinate of Q is the solution of

𝑥𝑥 = �𝑥𝑥
6

+ 2√𝑥𝑥
3

We have turning points at 6𝑥𝑥
2−𝑥𝑥−4√𝑥𝑥
2𝑥𝑥√𝑥𝑥

= 0 ⇒ 6𝑥𝑥2 − 𝑥𝑥 − 4√𝑥𝑥 = 0 

6𝑥𝑥2 = 𝑥𝑥 + 4√𝑥𝑥 

𝑥𝑥 = �𝑥𝑥
6

+
2√𝑥𝑥

3

(2) 

M1 Sets 6𝑥𝑥2 − 𝑥𝑥 − 4√𝑥𝑥 = 0 and writes a line equivalent to 𝑥𝑥2 = ±𝑥𝑥±4√𝑥𝑥
6

 

 A1 Completely correct with all the signs correct. 

         OR Alternative working backwards 

 M1 Starts with answer and squares, multiples each side by 6 

  A1 Completely correct 6𝑥𝑥2 − 𝑥𝑥 − 4√𝑥𝑥 = 0 and states f(𝑥𝑥) = 0 
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  To find an approximation for the x-coordinate of Q, the iteration formula 

𝑥𝑥𝑛𝑛+1 = �𝑥𝑥𝑛𝑛
6

+ 2�𝑥𝑥𝑛𝑛
3

    is used. 

c. Taking 𝑥𝑥0 = 0.8, find the values of 𝑥𝑥1, 𝑥𝑥2 and 𝑥𝑥3.

Give your answers to 3 decimal places.

𝑥𝑥1 = �0.8
6

+ 2√0.8
3

  = 0.854 to 3dp 

𝑥𝑥2 = �0.854
6

+ 2√0.854
3

= 0.871 to 3dp 

𝑥𝑥3 = �0.871
6

+ 2√0.871
3

= 0.876 to 3dp 

(3) 

c. M1 An attempt to substitute 𝑥𝑥0 = 0.8 into the iterative formula. A sight of

A1 Answer which rounds to  𝑥𝑥1 = 0.854

A1  Both answers which round to  𝑥𝑥2 = 0.871  and 𝑥𝑥3 = 0.876

   (Total for Question 6 is 9 marks) 
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7. A curve C has equation 𝑦𝑦 = f(𝑥𝑥).

Given that

• f ′(𝑥𝑥) = 18𝑥𝑥2 + 2𝑎𝑎𝑥𝑥 + 𝑏𝑏
• the y-intercept of C is −48
• the point A, with coordinates (−1,45) lies on C

a. show that 𝑎𝑎 − 𝑏𝑏 = 99

𝑓𝑓(𝑥𝑥) = ∫ 𝑓𝑓′(𝑥𝑥) 
𝑓𝑓(𝑥𝑥) = ∫ 18𝑥𝑥2 + 2𝑎𝑎𝑥𝑥 + 𝑏𝑏 

𝑓𝑓(𝑥𝑥) =
18𝑥𝑥3

3
+

2𝑎𝑎𝑥𝑥2

2
+ 𝑏𝑏𝑥𝑥 + 𝑐𝑐

𝑓𝑓(𝑥𝑥) = 6𝑥𝑥3 + 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 

The y-intercept of C is −48 ⇒ 𝑐𝑐 = −48 

The point A, with coordinates (−1,45) lies on C ⇒ 6(−1)3 + 𝑎𝑎(−1)2 + 𝑏𝑏(−1) − 48 = 45 

⇒ −6 + 𝑎𝑎 − 𝑏𝑏 − 48 = 45 ⇒ 𝑎𝑎 − 𝑏𝑏 = 99

M1 Integrates f ′(𝑥𝑥) = 18𝑥𝑥2 + 2𝑎𝑎𝑥𝑥 + 𝑏𝑏 

A1 Fully correct integration  

 B1 Deduces that the constant term is −48 

  B1 Uses f(−1) = 45 and obtains a linear equation in terms of a and b. 

(4) 

    The tangent to C at the point A has gradient −84. 

b. Find the value of a and the value of b.

𝑓𝑓′(−1) = 18(−1)2 + 2𝑎𝑎(−1) + 𝑏𝑏 = −84 ⇒ −2𝑎𝑎 + 𝑏𝑏 = −84 

We have two equations: 

𝑎𝑎 − 𝑏𝑏 = 99  

−2a + b = −102 

Solving simultaneously: a = 3, b = −96

B1 Uses f ′(−1) = −84 and obtains a linear equation in terms of a and b. 

M1 Attempts to solve simultaneously to get values for both a and b.  

 A1 𝑎𝑎 = 3, 𝑏𝑏 = −96 

(3)
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c. Show that (2𝑥𝑥 + 1) is a factor of f(𝑥𝑥).

The factor theorem states that if 2𝑥𝑥 + 1 is a factor of 𝑓𝑓(𝑥𝑥) then 𝑓𝑓 �− 1
2
� = 0 

f �−
1
2�

= 6 �−
1
2�

3

+ 3 �−
1
2�

2

− 96 �−
1
2�

− 48 = 0 

Therefore (2𝑥𝑥 + 1) is a factor 

(2) 

M1 Attempts f(± 1
2
) or divides by (2𝑥𝑥 + 1). Look for a constant remainder in the long 

              division. 

        A1 Obtains a remainder zero and makes a conclusion 

e.g. remainder = 0, hence (2𝑥𝑥 + 1) is a factor.

   (Total for Question 7 is 9 marks) 
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8.  

Figure 2 

     The curves with equation 𝑦𝑦 = 21 − 2𝑥𝑥 meet the curve with equation 𝑦𝑦 = 22𝑥𝑥+1 at the 

     point A as shown in Figure 2.  

     Find the exact coordinates of point A. 

The curves meet when 

21 − 2𝑥𝑥 = 22𝑥𝑥+1 

2(22𝑥𝑥) + 2𝑥𝑥 − 21 = 0 

Let 𝑦𝑦 = 2𝑥𝑥: 

2𝑦𝑦2 + 𝑦𝑦 − 21 = 0 ⇒ 𝑦𝑦 = 3,𝑦𝑦 = −3.5 

𝑦𝑦 = 3 ⇒ 2𝑥𝑥 = 3 ⇒ 𝑥𝑥 = log2 3 

𝑦𝑦 = −3.5 ⇒ 2𝑥𝑥 = −3.5 ⇒ 𝑥𝑥 undefined 

Coordinates of 𝐴𝐴: (log2 3 , 18) 

     B1 Combines the equations 21 − 2𝑥𝑥 = 22𝑥𝑥+1 to reach a correct quadratic equation in 2𝑥𝑥  

      M1 Solves a quadratic equation of the form 𝑎𝑎𝑦𝑦2 + 𝑏𝑏𝑦𝑦 ± 21 = 0    by factorisation or by 

             completion of the square or by correct use of formula.  

      dM1 Uses logs correctly and proceeds to a value for x from an equation of the form 

              2𝑥𝑥 = 𝑘𝑘 where 𝑘𝑘 > 1 and attempts to find the corresponding y-value. 

       A1 Correct solution only (log23, 18) 

(4) 

  (Total for Question 8 is 4 marks) 

𝑦𝑦 = 21 − 2𝑥𝑥 
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9. A cup of tea is cooling down in a room.

The temperature of tea, 𝜃𝜃℃, at time t minutes after the tea is made, is modelled by the

equation

𝜃𝜃 = 𝐴𝐴 + 70𝑒𝑒−0.025𝑡𝑡 

     where A is a positive constant. 

     Given that the initial temperature of the tea is 85℃ 

a. find the value of A.

At time 𝑡𝑡 = 0,𝜃𝜃 = 85: 

85 = 𝐴𝐴 + 70𝑒𝑒0 ⇒ 𝐴𝐴 = 15 

B1 Substitutes 𝑡𝑡 = 0,𝜃𝜃 = 85 into the equation of the model to obtain the value of A. 

(1) 

b. Find the temperature of the tea 20 minutes after it is made.

At time 𝑡𝑡 = 20: 

𝜃𝜃 = 15 + 70𝑒𝑒−0.5 

𝜃𝜃 = 57.46℃ 

M1 Substitutes 𝑡𝑡 = 20 into the given equation with their A to obtain a value for  𝜃𝜃 

A1 awrt 57.50𝐴𝐴 

(2)
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c. Find how long it will take the tea to cool down to 43℃.

43 = 15 + 70𝑒𝑒−0.025𝑡𝑡 
28 = 70𝑒𝑒−0.025𝑡𝑡 

𝑒𝑒−0.025𝑡𝑡 =
28
70

𝑡𝑡 =
ln 2

5
−0.025

= 36.7 

         M1 Substitutes 𝜃𝜃 = 43 into the given equation with their A and proceeds to a form 

𝑃𝑃 = 𝑄𝑄𝑒𝑒−0.025𝑡𝑡 or 𝑀𝑀 = 𝑁𝑁𝑒𝑒0.025𝑡𝑡 

         A1 For 𝑒𝑒−0.025𝑡𝑡 = 28
70

  or  𝑒𝑒0.025𝑡𝑡 = 70
28

  or equivalent 

         M1 Takes ln’s correctly to reach  −0.025𝑡𝑡 = ln𝛼𝛼  ,𝛼𝛼 > 0 

          A1 awrt 36.7 minutes 

e.g 𝑡𝑡 =
ln25

−0.025
= 36.7 

(4) 

   (Total for Question 9 is 7 marks) 
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10. a. Show that

sin 3𝐴𝐴 ≡ 3 sin𝐴𝐴 − 4sin3𝐴𝐴 

(4) 

Using the angle addition formulae and double angle formulae: 

sin(2𝐴𝐴 + 𝐴𝐴) = sin 2𝐴𝐴 cos𝐴𝐴 ± cos 2𝐴𝐴 sin𝐴𝐴 

sin 3𝐴𝐴 = 2 sin𝐴𝐴 cos𝐴𝐴 cos𝐴𝐴 + (1 − 2sin2𝐴𝐴) sin𝐴𝐴 

= 2 sin𝐴𝐴 cos2𝐴𝐴 + sin𝐴𝐴 − 2sin3𝐴𝐴 

Using cos2𝐴𝐴 = 1 − sin2𝐴𝐴 

sin 3𝐴𝐴 = 2 sin𝐴𝐴(1 − sin2𝐴𝐴) + sin𝐴𝐴 − 2sin3𝐴𝐴 

sin 3𝐴𝐴 ≡ 3 sin𝐴𝐴 − 4sin3𝐴𝐴 

M1 Attempts to use the identity for sin(2𝐴𝐴 + 𝐴𝐴) = sin 2𝐴𝐴 cos𝐴𝐴 ± cos 2𝐴𝐴 sin𝐴𝐴 

dM1 Uses the correct double angle identities for sin 2A and cos 2A. 

ddM1 Reaches an expression in terms of sin A only by use of cos2𝐴𝐴 = 1 − sin2𝐴𝐴 

A1 Correct solution only sin 3𝐴𝐴 ≡ 3 sin𝐴𝐴 − 4sin3𝐴𝐴 
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b. Hence solve, for −𝜋𝜋
2
≤ 𝜃𝜃 ≤ 𝜋𝜋

2
 the equation

1 + sin 3𝜃𝜃 = cos2𝜃𝜃 

sin 3𝐴𝐴 ≡ 3 sin𝐴𝐴 − 4sin3𝐴𝐴 

Using cos2𝜃𝜃 = 1 − sin2𝜃𝜃: 

1 + sin 3𝜃𝜃 = cos2𝜃𝜃   ⇒  1 + sin 3𝜃𝜃 = 1 − sin2𝜃𝜃 

1 + sin 3𝜃𝜃 = 1 − sin2𝜃𝜃   ⇒   1 + 3 sin𝜃𝜃 − 4sin3𝜃𝜃  = 1 − sin2𝜃𝜃 

4sin3𝜃𝜃 − sin2𝜃𝜃 − 3 sin𝜃𝜃 = 0    ⇒ sin𝜃𝜃(4sin2𝜃𝜃 − sin𝜃𝜃 − 3) = 0 

sin𝜃𝜃(4 sin𝜃𝜃 + 3)(sin𝜃𝜃 − 1) = 0    ⇒ sin𝜃𝜃 = 0, 𝜋𝜋
2

,−0.848

 M1 Attempts to produce an equation just in sin 𝜃𝜃 using both part (a) and the identity 

cos2𝜃𝜃 = 1 − sin2𝜃𝜃 

  dM1 Uses sin 3𝜃𝜃 ≡ 3 sin𝜃𝜃 − 4sin3𝜃𝜃  and obtains a cubic equation in sin 𝜃𝜃 and  

attempts to solve.  This could include factorisation or division of a sin 𝜃𝜃 term  

followed by an attempt to solve the 3 terms quadratic equation in sin 𝜃𝜃 to reach at 

least one none zero value for sin 𝜃𝜃. 

A1 correct solution only 0, 𝜋𝜋
2

,−0.848

(3) 

   (Total for Question 10 is 7 marks) 

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu



11. a. Sketch the graph of the function with equation

𝑦𝑦 = 11 − 2|2 − 𝑥𝑥| 

          stating the coordinates of the maximum point and any points where the graph cuts the 

y-axis.

B1 A ∧-shape with intercepts at (−7
2

, 0) and (15
2

, 0) or marked −7
2
 and 15

2
 on the x-axis. 

B1 A ∧-shape with intercept at (0,7) or 7 marked on the y-axis 

B1 Maximum point at (2,11) that lies in the 1. quadrant. 

(3) 

b. Solve the equation

4𝑥𝑥 = 11 − 2|2 − 𝑥𝑥| 

4𝑥𝑥 = 11 + 2(2 − 𝑥𝑥) ⇒  4𝑥𝑥 − 11 = 2(2 − 𝑥𝑥)  ⇒   𝑥𝑥 = 5
2
   

M1 Attempts to solve 4𝑥𝑥 = 11 + 2(2 − 𝑥𝑥)   ⇒  𝑥𝑥 = ⋯   Must reach a value for x. 

 A1 𝑥𝑥 = 5
2
 

(2)
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     A straight line l has equation 𝑦𝑦 = 𝑘𝑘𝑥𝑥 + 13, where k is a constant. 

     Given that l does not meet or intersect  𝑦𝑦 = 11 − 2|2 − 𝑥𝑥| 

c. find the range of possible value of k.

The line 𝑦𝑦 = 𝑘𝑘𝑥𝑥 + 13 will always pass through (0,13) and at the first point of intersection 
will intersect at the maximum of 𝑦𝑦 = 11 − 2|2 − 𝑥𝑥| which is (2,11) from part a. 

11 = 𝑘𝑘(2) + 13 ⇒ 𝑘𝑘 = −1 

If 𝑘𝑘 > −1, then the lines will not intersect 

The lines will intersect if the gradient of 𝑦𝑦 = 𝑘𝑘𝑥𝑥 + 13 is ‘steeper’ than that of 𝑦𝑦 = 11 −
2|2 − 𝑥𝑥|, which is 2 

So −1 < 𝑘𝑘 < 2 

M1 Attempts to solve 𝑦𝑦 = 𝑘𝑘𝑥𝑥 + 13 with their (2,11) to find k or deduces that 𝑘𝑘 > −1 

            A1 Finds that 𝑘𝑘 = 2 is a critical value 

            A1 −1 < 𝑘𝑘 < 2 

(3) 

   (Total for Question 11 is 8 marks) 
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12.  

Figure 5 

       Figure 5 shows part of the curve C with parametric equations 

𝑥𝑥 = 2 cos 𝜃𝜃                 𝑦𝑦 = sin 2𝜃𝜃 0 ≤ 𝜃𝜃 ≤ 𝜋𝜋
2

       The region R, shown shaded in figure 5, is bounded by the curve C, the line 𝑥𝑥 = √2  

       and the x-axis.  This shaded region is rotated through 2𝜋𝜋 radians about the x-axis to form 

       a solid revolution. 

a. Show that the volume of the solid of revolution formed is given by the integral.

𝑘𝑘 � sin3𝜃𝜃cos2𝜃𝜃    d𝜃𝜃

𝜋𝜋
2

𝜋𝜋
4

 

          where k is a constant. 

When a curve, defined by parametric equations, is rotated by 2𝜋𝜋 radians about the 𝑥𝑥 axis, 
then the volume is given by: 

𝑉𝑉 = 𝜋𝜋� 𝑦𝑦(𝑡𝑡)2(𝑥𝑥′(𝑡𝑡))
𝑏𝑏

𝑎𝑎
 𝑑𝑑𝑡𝑡 

So in this case, 

When 𝑥𝑥 = √2 ⇒ 𝜃𝜃 = 𝜋𝜋
4
, 𝑥𝑥 = 0 ⇒ 𝜃𝜃 = 𝜋𝜋

2

𝑉𝑉 = 𝜋𝜋� (sin 2𝜃𝜃)2  (−2 sin𝜃𝜃) d𝜃𝜃
𝜋𝜋
2

𝜋𝜋
4
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Using sin 2𝜃𝜃 = 2 sin𝜃𝜃 cos 𝜃𝜃 

𝑉𝑉 = 𝜋𝜋� (2 sin𝜃𝜃 cos𝜃𝜃)2  (−2 sin𝜃𝜃) d𝜃𝜃
𝜋𝜋
2

𝜋𝜋
4

 

= 𝜋𝜋� 4 sin2𝜃𝜃 cos2 𝜃𝜃 (−2 sin𝜃𝜃) d𝜃𝜃
𝜋𝜋
2

𝜋𝜋
4

 

= −8𝜋𝜋� sin3𝜃𝜃cos2𝜃𝜃
𝜋𝜋
2

𝜋𝜋
4

 d𝜃𝜃 

As we are considering a volume, 𝑘𝑘 − 8𝜋𝜋 

M1 Attempts 𝑉𝑉 = 𝜋𝜋 ∫𝑦𝑦 d𝑥𝑥 = 𝜋𝜋 ∫𝑦𝑦 d𝑥𝑥
d𝜃𝜃

d𝜃𝜃     where d𝑥𝑥
d𝜃𝜃

= ±𝑘𝑘 sin𝜃𝜃 

A1 ∫ (sin 2𝜃𝜃)2  (−2 sin𝜃𝜃) d𝜃𝜃 

M1 Attempts to use sin 2𝜃𝜃 = 2 sin𝜃𝜃 cos𝜃𝜃 within an integral which may be implied by     

B1 Finds correct limits stating 𝑥𝑥 = 0 ⇒ 𝜃𝜃 = 𝜋𝜋
2

 , 𝑥𝑥 = √2 ⇒ 𝜃𝜃 = 𝜋𝜋
4
 or a correct value for k.

A1 Achieves printed answer including d𝜃𝜃 with correct limits and 8𝜋𝜋 in place with no  

               errors.    

(5)

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu



b. Hence, find the exact value for this volume, giving your answer in the form

            𝑝𝑝𝜋𝜋√2 where p is a constant. 

𝑢𝑢 = cos𝜃𝜃   ⇒   
d𝑢𝑢
d𝜃𝜃

= − sin𝜃𝜃 

𝑉𝑉 = 𝑘𝑘 � sin3𝜃𝜃cos2𝜃𝜃  d𝜃𝜃 = 𝑘𝑘� sin3𝜃𝜃(−𝑢𝑢2)
d𝑢𝑢

sin𝜃𝜃
= 𝑘𝑘�−𝑢𝑢2sin2𝜃𝜃  d𝑢𝑢 

= 𝑘𝑘�−𝑢𝑢2(1 − 𝑢𝑢2)  d𝑢𝑢 

= 𝑘𝑘 �
𝑢𝑢5

5
−
𝑢𝑢3

3
� 

8𝜋𝜋 �
cos5𝜃𝜃

5
−

cos3𝜃𝜃
3 �

𝜋𝜋
4

𝜋𝜋
2

= 8𝜋𝜋 �(0) − �
(√2

2 )5

5
−

(√2
2 )3

3 �� =
7√2
15

𝜋𝜋 

(5) 

 B1 States 𝑢𝑢 = cos 𝜃𝜃   ⇒   d𝑢𝑢
d𝜃𝜃

= − sin𝜃𝜃 

 M1 Substitutes fully including for d𝜃𝜃 using 𝑢𝑢 = cos 𝜃𝜃   and sin2𝜃𝜃 = ±1 ± cos2𝜃𝜃 to  

produce an integral just in terms of u. 

   M1 Multiplies out to form a polynomial in u and integrates with un  → un+1 for at least 

one of their powers of u. 

   M1 All methods must have been scored.  It is for using the limits 0 and √2
2

 and  

subtracting or for using the limits 𝜋𝜋
2
 and 𝜋𝜋

4
 if they return to cos 𝜃𝜃.

   A1 𝑉𝑉 = 7√2
15
𝜋𝜋 

   (Total for Question 12 is 10 marks) 
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13. The function g is defined by

g(𝑥𝑥) = 2𝑒𝑒𝑥𝑥−5
𝑒𝑒𝑥𝑥−4

           𝑥𝑥 ≠ 𝑘𝑘,   𝑥𝑥 > 0 

      where k is a constant. 

a. Deduce the value of k.

For the function to be defined, the denominator cannot be equal to zero. 

𝑒𝑒𝑥𝑥 − 4 = 0 

𝑥𝑥 ≠ ln 4 

B1 Deduces 𝑘𝑘 = ln 4  or  𝑥𝑥 ≠ ln 4 

(1) 

b. Prove that

g′(𝑥𝑥) < 0 

          For all values of x in the domain of g. 

Differentiating 𝑔𝑔(𝑥𝑥) using the quotient rule: 

𝑢𝑢 = 2𝑒𝑒𝑥𝑥 − 5 ⇒ 𝑢𝑢′ = 2𝑒𝑒𝑥𝑥 and 𝑣𝑣 = 𝑒𝑒𝑥𝑥 − 4  ⇒ 𝑣𝑣′ = 𝑒𝑒𝑥𝑥 

d
d𝑥𝑥

�g(𝑥𝑥)� =
(𝑒𝑒𝑥𝑥 − 4) × 𝛼𝛼𝑒𝑒𝑥𝑥 − (2𝑒𝑒𝑥𝑥 − 5) × 𝛽𝛽𝑒𝑒𝑥𝑥

(𝑒𝑒𝑥𝑥 − 4)2
, 𝛼𝛼,𝛽𝛽 > 0 

𝑔𝑔′(𝑥𝑥) =
−3𝑒𝑒𝑥𝑥

(𝑒𝑒𝑥𝑥 − 4)2

As −3𝑒𝑒𝑥𝑥 < 0 and (𝑒𝑒𝑥𝑥 − 4)2 > 0 so g′(𝑥𝑥) < 0 

      M1 Attempts to differentiate via the quotient rule/ product rule/ chain rule 

A1 −3𝑒𝑒𝑥𝑥

(𝑒𝑒𝑥𝑥−4)2
   or equivalent 

       A1 Correct solution only.  States that as −3𝑒𝑒𝑥𝑥 < 0 and (𝑒𝑒𝑥𝑥 − 4)2 > 0 so g′(𝑥𝑥) < 0 

(3)
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c. Find the range of values of a for which

g(𝑎𝑎) > 0 

2𝑒𝑒𝑥𝑥 − 5 > 0 

𝑎𝑎 > ln 4,   0 < 𝑎𝑎 < ln
5
2

(2) 

M1 Attempts to solve either 2𝑒𝑒𝑥𝑥 − 5 = 0 or 𝑒𝑒𝑥𝑥 − 4 = 0 or using inequalities 

A1 𝑎𝑎 > ln 4,   0 < 𝑎𝑎 < ln 5
2
 

   (Total for Question 13 is 6 marks) 
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14. A circle C has equation 𝑥𝑥2 + 𝑦𝑦2 − 6𝑥𝑥 − 14𝑦𝑦 = 40.

The line l has equation 𝑦𝑦 = 𝑥𝑥 + 𝑘𝑘, where k is a constant.

a. Show that the x-coordinate of the points where C and l intersect are given by the

solutions to the equation

2𝑥𝑥2 + (2𝑘𝑘 − 20)𝑥𝑥 + 𝑘𝑘2 − 14𝑘𝑘 − 40 = 0 

Substituting 𝑦𝑦 = 𝑥𝑥 + 𝑘𝑘 into the equation of the circle gives: 

𝑥𝑥2 + (𝑥𝑥 + 𝑘𝑘)2 − 6𝑥𝑥 − 14(𝑥𝑥 + 𝑘𝑘) = 40   

2𝑥𝑥2 + (2𝑘𝑘 − 20)𝑥𝑥 + 𝑘𝑘2 − 14𝑘𝑘 − 40 = 0 

       (2) 

M1 Attempts to form an equation with terms of the form 𝑥𝑥2, 𝑥𝑥,𝑘𝑘2 and 𝑘𝑘𝑥𝑥 only using 

𝑦𝑦 = 𝑥𝑥 + 𝑘𝑘 and 𝑥𝑥2 + 𝑦𝑦2 − 6𝑥𝑥 − 14𝑦𝑦 = 40 which must be an appropriate form.  

 A1 Uses correct and accurate algebra leading to the given solution. 

b. Hence find the two values of k for which l is a tangent to C.

𝑙𝑙 is a tangent to 𝐴𝐴 when they intersect at one point only, meaning that the discriminant of the 
quadratic in part a must equal zero 

(2𝑘𝑘 − 20)2 − 4(2)(𝑘𝑘2 − 14𝑘𝑘 − 40) = 0 

𝑘𝑘2 − 8𝑘𝑘 − 180 = 0 

(𝑘𝑘 − 18)(𝑘𝑘 + 10) = 0     

𝑘𝑘 = 18,𝑘𝑘 = −10 

(4) 

 M1 Attempts to use 𝑏𝑏2 − 4𝑎𝑎𝑐𝑐 = 0 with 𝑎𝑎 = 2, 𝑏𝑏 = 2𝑘𝑘 − 20 and 𝑐𝑐 = 𝑘𝑘2 − 14𝑘𝑘 − 40 

and forms a 3TQ equation in terms of k. 

A1 Correct quadratic equation in k.  

M1 Correct attempt to solve their 3TQ in k.   

 A1 𝑘𝑘 = 18,𝑘𝑘 = −10 

   (Total for Question 14 is 6 marks) 
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15. An infinite geometric series has first four terms 1 − 2𝑥𝑥 + 4𝑥𝑥2 − 8𝑥𝑥3 + ⋯.  The series is

convergent.

a. Find the set of possible values of x for which the series converges.

For the series to be convergent, |𝑟𝑟| < 1.  

Therefore, |−2𝑥𝑥| < 1,  so |𝑥𝑥| < 1
2
 

M1 Understands that for the series to be convergent |𝑟𝑟| < 1 or states |−2𝑥𝑥| < 1 

 A1 Correctly concludes that |𝑥𝑥| < 1
2
 .   Accept   −1

2
< 𝑥𝑥 < 1

2
 

(2) 

      Given that                                 , 

b. calculate the value of x.

From the formula book,

𝑆𝑆∞ =
𝑎𝑎

1 − 𝑟𝑟

So 

𝑆𝑆∞ =
1

1 + 2𝑥𝑥
= 8 

1
8

= 1 + 2𝑥𝑥   ⇒ 2𝑥𝑥 = −
7
8

⇒  𝑥𝑥 = −
7

16

(3) 

          M1 Understands to use the sum to infinity formula. 

e.g. 1
1+2𝑥𝑥

= 8 

          M1 Attempts to solve for x. 

                 e.g. 1
8

= 1 + 2𝑥𝑥   ⇒ 2𝑥𝑥 = −7
8

⇒  𝑥𝑥 = ⋯

          A1 𝑥𝑥 = − 7
16

   (Total for Question 15 is 5 marks) 

�(−2𝑥𝑥)𝑟𝑟−1 = 8
∞

𝑟𝑟=1

 , 
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16. Prove by contradiction that if n2 is a multiple of 3, n is a multiple of 3.

      B1 Assume that there exists a number n that isn’t a multiple of 3 yet n2 is a multiple of 3 

      M1 States that 𝑚𝑚 = 3𝑘𝑘 + 1 or 𝑚𝑚 = 3𝑘𝑘 + 2 and attempts to square. 

            Alternatively exist such as that 𝑚𝑚 = 3𝑘𝑘 + 1 or 𝑚𝑚 = 3𝑘𝑘 − 1 

      M1 States that  𝑚𝑚 = 3𝑘𝑘 + 1 and  𝑚𝑚 = 3𝑘𝑘 + 2 and attempts to square. 

      A1 Achieves forms that can be argued as to why they are not a multiple of 3 

e.g. 𝑚𝑚2 = (3𝑝𝑝 + 1)2 = 9𝑝𝑝2 + 6𝑝𝑝 + 1 = 3(3𝑝𝑝2 + 2𝑝𝑝) + 1

and 𝑚𝑚2 = (3𝑝𝑝 + 2)2 = 9𝑝𝑝2 + 12𝑝𝑝 + 4 = 3(3𝑝𝑝2 + 4𝑝𝑝 + 1) + 1

      A1 Correct proof which requires 

• Correct calculations
• Correct reasons.   E.g. 9𝑝𝑝2 + 6𝑝𝑝 + 1 or 9𝑝𝑝2 + 12𝑝𝑝 + 4 is not a multiple of 3
• Minimal conclusion.

(5) 

   (Total for Question 16 is 5 marks) 
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